M1. (a)	(i)	any o	one from:	
		•	one electron in the outer shell / energy level form ions with a 1+ charge	1
	(i	i) anı	y one from:	
	·	•	hydrogen is a non-metal (at RTP) hydrogen is a gas hydrogen does not react with water hydrogen has only one electron shell / energy level hydrogen can gain an electron or hydrogen can form a negative / hydride / H ⁻ ion hydrogen forms covalent bonds or shares electrons accept answers in terms of the Group 1 elements	4
				1
(b)	(i) (br	romine) gains electrons it = bromine do not accept bromide ion gains electrons ignore loss of oxygen	1
	(i	i) l ₂	must both be on the right hand side of the equation	1
		+	2e¯ 2l¯ – 2e¯ → l₂ for 2 marks	1
	(i		orine is the smallest atom in Group 7 or has the fewest energy levels in roup 7 or has the smallest distance between outer shell and nucleus the outer shell must be mentioned to score 3 marks	1

fluorine has the least shielding ${f or}$ the greatest attraction between the nucleus and the outer shell

1

1

therefore fluorine can gain an electron (into the outer shell) more easily

[8]

M2. (a	a) if	placed consecutively, then elements would be in wrong group / have wrong properties allow some elements didn't fit pattern	1
		left gaps	1
	(b)	(elements placed in) atomic / proton number order	1
		(elements in) same group have same number of <u>outer</u> electrons	1
		any one from:	
		• number of protons = number of electrons	
		reactions/(chemical) properties depend on the (outer) electrons	
		number of shells gives the period allow number of shells increases down the group	1
	(c)	(i) (transition elements usually) have same / similar number of outer / 4th shell electrons allow 2 electrons in outer shell	1
		(because) inner (3rd) shell / energy level is being filled ignore shells overlap	1
		(ii) 2 nd shell / energy level can (only) have maximum of 8 electrons	

accept no d-orbitals

or 2nd shell / energy level cannot have 18 electrons

[8]

1

M3. (a) (i) incorrect or no element = **0** marks hydrogen allow H / H₂ 1 all the other elements are metals allow hydrogen is a not an (alkali / group 1) metal ignore hydrogen is a gas OR copper (1) allow Cu (copper) is not an alkali metal (1) allow Cu is a transition element / metal allow any valid specific chemical property eg Cu does not react with water ignore references to electronic structure ignore physical properties 1 Group 0 / noble gases (ii) ignore Group 8 1 scandium / gallium / germanium (b) (i) accept Sc / Ga / Ge allow Krypton / Kr 1 (ii) predicted they were metals allow atomic mass / weight ignore atomic structure 1

		accept any chemical / physical property	
		allow similar properties if mentioned in context of a group	1
(c)	(i)	(both) have <u>one</u> / <u>an</u> electron in the outer energy level / shell ignore form single plus ions	1
	(ii)	accept shell for energy level accept converse explanation for lithium if 'outer' not mentioned, max 2 marks ignore sodium reacts more easily sodium loses one outer electron more easily (than lithium)	1
		because outer electrons/energy level furth <u>er</u> from the nucleus in sodium or because sodium has <u>more</u> shells (than lithium) do not accept 'more outer shells' allow sodium (atom) is larger	1
		because forces/attraction to hold outer electron are weak <u>er</u> in sodium (than lithium) accept more shielding in sodium (than lithium)	1

[10]

predicted their (chemical/physical) properties / reactivity

M4.	(a)	because the nitrogen from dry air contained noble/Group 0 gases ignore other gases	
	or		
	(be	ecause the nitrogen from dry air) contained argon / krypton / xenon ignore helium and neon	1
		d three / some of these gases, (argon, krypton, xenon) have a greater density tha trogen ignore helium and neon	n
	or		
	an	d argon / krypton / xenon has a greater density than nitrogen	1
(b)	(i)	carbon dioxide would form / is a solid accept carbon dioxide freezes or its freezing point is > -200°C ignore melting point	
		or	
		(solid) carbon dioxide would block pipes	1
	(ii)	helium (and) neon both needed for 1 mark accept He and Ne	1
	(iii	argon (and) oxygen accept Ar and O ₂	1

1

[6]

M5.		(a)	all have seven electrons in their outer shell / energy level	1	
	(b)		must be comparative in all points or converse		
		chl	orine atom is smaller than bromine atom		
		or chl	orine atom has fewer shells than bromine atom	1	
			ter shell / energy level of chlorine has stronger (electrostatic) attraction to e nucleus than bromine		
		or ou	ter shell of chlorine is less shielded from the nucleus than bromine	1	
		so	chlorine more readily <u>gains</u> an extra electron	1	[4]

M6.		(a)	left gaps	1
			placed consecutively, then elements would be in wrong group / have wrong operties / owtte allow some elements didn't fit pattern	1
	(b)	(el	ements placed in) atomic / proton number order	1
		(el	ements in) same group have same number of <u>outer</u> electrons	1
		an [•]	number of protons = number of electrons reactions (chemical) properties depend on the (outer) electrons number of shells gives the period allow number of shells increases down the group	1
	(c)	(i)	(transition elements usually) have same / similar number of outer / 4th shell electrons	1
			inner (3 rd) shell / energy level is being filled ignore shells overlap	1
		(ii)	2^{nd} shell / energy level can (only) have maximum of 8 electrons	

or

 2^{nd} shell / energy level cannot have 18 electrons

1

[8]

M7. (a) $40 (Ca) + 137 (Ba) \div 2 = 88.5$

accept a recognition that the average is near 88 or it is the average of the other two accept Sr is midway between Ca and Ba

1

(b) eg newly discovered elements / atoms didn't fit (into triads) **or** didn't apply to all elements / atoms **or** lot of exceptions

he = Döbereiner

ignore Mendeleev left spaces **or** not enough evidence

1

- (c) any **two** from:
 - fizzes / bubbles / gas
 hydrogen alone is insufficient
 ignore incorrect name if 'gas' stated
 - violent / vigorous / explodes / very fast reaction accept container explodes ignore strong reaction
 - floats / on surface ignore sinks
 - moves (very quickly)
 - melts (into a ball)
 - bursts into flame
 accept (bright) light
 ignore colour / glow
 - gets smaller / (reacts to) form a solution / dissolves / disappears etc
 - steam / gets hot (owtte)
 ignore alkaline solutions or change in colour etc

2

(d) (i) same number of electrons in outer shell

	accept a correct reference to a specific group	
	eg (all) have one electron in outershell / (all) lose one electron (when they react)	
		1
(ii)	electrons fill an inner / 3 rd shell	
	accept energy level for shell	
	accept d-level being filled accept specific reference to 3rd shell	
	accept specific rejerence to Sra shell accept descriptions in terms of 3d & 4s etc	
	decept decempations in common ey out at no occ	1
	(usually) same number of outer / 4th shell electrons	
	(usually) same number of outer / 4 shell electrons	1
/:::\		
(iii)	the Halatings	
	it = lithium	
	accept energy level for shell or converse reasoning for potassium	
	outer shell electron closer to nucleus	
	accept fewer shells / smaller atom	
		1
	more (electrostatic) attraction (to nucleus) / electrons less likely to be lost	
	accept less shielding / isn't much shielding	
	ignore nucleus has more influence but accept nucleus has more influence over the outer electron(s)	
	do not accept magnetic / gravitational attraction	

[9]

accept energy level for shell

Page 14